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Executive Summary  
 

The deliverable 4.1 Part 2 “Review of accuracy assessment methods” is a contribution of MultiMiner 

Task 4.1: In Situ data standardization and databases to Deliverable D4.1: “Field work protocols for in 

situ data collection and review of accuracy assessment methods”. It includes a description of the data 

collection standards and protocols to be used in accuracy assessment of the multi-scale and multi-

source data products and test site specific ground truth activities. Accuracy assessment is the final step 

of the data processing chain which results in assessment for the quality of the application 

demonstrations done in the MultiMiner project. The accuracy assessment of quantitative image 

classification provides measures of the relative quality. Based on these measures notifications about 

the exactness of the estimations and the systematic errors of the outcomes can be made. 

For a statistically robust and transparent approach in the MultiMiner project, chapter 1 describes the 

principles of thematic accuracy assessment methods, which are important to ensure the integrity of 

the resulted products. Methods of quantitative image classification accuracy assessment are 

presented. Sample size calculation, sampling design methods and strategies concerning imbalance/ 

rare classes and mitigation of limited reference data are discussed.  

Chapter 2 provides an overview of the quality of EO data used for MultiMiner applications. As the 

quality of satellite remote sensing (RS) data is largely assumed to be guaranteed by the providers 

(Chapter 2.1), the acquisition of manner aircraft and drone data especially acquired for the MultiMiner 

project is examined in detail with regard to the quality.  

The definition of the thematic accuracy assessment procedures for MultiMiner application 

demonstrations are the focus of Appendix 1 (SENSITIVE). Applications are defined as followed: mineral 

exploration, vegetation monitoring, water quality and AMD, ground moisture monitoring, integrated 

TSF monitoring, 3D mine site monitoring (consisting of dam stability monitoring and open pit stability 

monitoring) and dust monitoring. With the description regarding accuracy assessment, the collected 

in situ data and used EO data, a sampling design evaluation for each application is performed in order 

to use reasonable methods to determine the respective accuracies. The sampling strategies ensure the 

spatial and temporal representativeness of the collected data for calibration and demonstration of the 

varied multi-source and multi-scale data products. Appropriate thematic accuracy assessment 

concepts are developed for quantitative and non-quantitative attributes.  Quantitative accuracy 

assessment measures (e.g., the contingency table and derived overall, producer’s and user’s 

accuracies, kappa, precision-recall curves, ROC curves and their AUCs, RMSE) for each data processing 

product varies greatly because of the nature of the data products produced by the project. 

The goals of the report are to 

• review the existing thematic accuracy assessment concepts and methods with a special 
emphasis on the approaches with a limited number of in situ data and accuracy assessment 
methods of weakly supervised and unsupervised classification results,   

• and to make a plan how to apply them for the MultiMiner application demonstrations. 
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1. Principles of thematic accuracy assessment methods  
 

1.1. Introduction to thematic accuracy assessment methods 

 

Over the years, RS technology has become an important source of data to provide useful information 

for various applications in mineral exploration (Sabins, 1999; Bedell, 2004; Pour et al., 2021) and mine 

site monitoring (Pour et al., 2023; Li et al., 2015; Mckenna et al., 2020). The information derived from 

RS data can be divided into thematic maps or statistics. Machine learning methodologies have become 

common tools for remotely sensed data interpretation into lithological, mineral, alteration and 

structural maps (e.g., Shirmard et al., 2022). Similarly, environmental impacts, safety and mining 

operations can be monitored with RS for instance for dust emissions (Batbold et al. 2022), water quality 

(Modiegi et al., 2020), open pit stability (Song et al., 2023), dam stability (Lumbroso et al., 2020; Yan 

et al., 2024), acid mine drainage (Jackisch et al., 2018), surface mineralogy of tailings storage facilities 

(Shang et al., 2014) and vegetation status (McKenna et al., 2020). It is essential that the thematic maps 

derived from remotely sensed data are accurate because they can be used as a major of information 

for decision making in daily mining operations (Jensen and Jensen, 2012; Wickham et al., 2013). It is 

important to note that information extracted from remotely sensed data are never free of errors. Thus, 

maps derived from RS data must be presented together with their uncertainty estimates. It is also 

essential to identify the origins of the uncertainties and mitigate them as much as possible. Therefore, 

thematic maps should always be subjected to a detailed accuracy assessment before they are being 

used for planning and decision making in mineral exploration and mining (Congalton et al., 2019; 

Borengasser et al., 2007; Moud et al. 2021). The common steps for evaluating the accuracy of RS 

derived thematic information includes: 1) Identifying the expected accuracy level, 2) determining 

whether the target variable is discrete or continuous, 3) and specifying the sampling design and the 

framework (Jensen, 2009). The accuracy and reliability of the RS data, along with the products derived 

from it, are contingent on the specific context of their application. In terms of widely recognized and 

frequently implemented best practices, we recommend referring to the seminal works by Congalton 

et al. (2019) and Olofsson et al. (2014).  
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1.2. Quantitative image classification accuracy assessment 
 

1.2.1. Confusion matrix 

 
To assess the accuracy of RS thematic maps, it is common to overlay in situ reference data on the 
classification image derived from unsupervised or supervised classification. In the confusion matrix 
table, the rows indicate the classification labels, and the columns indicate the labels from in situ data 
(Table 2). To perform thematic accuracy assessment using a confusion matrix, independent test data 
should be compiled of in situ measurements or observations. A classification map derived from 

remotely sensed data are compared pixel by pixel with the test data. The result of this step is a 
confusion matrix table that summarizes the agreement or disagreement between test data and 
classification. The confusion matrix is not effective at properly evaluating the classified map properties, 
unless the samples were collected using a random sampling design (Jensen, 2009).  
 
Table 2. Multiclass confusion matrix. UA = user’s accuracy and PA = producer’s accuracy, N = number of samples. 

Classes C1 C2 C3  n Row 
total 

UA 

C1 C1,1 C2,1 C1,3 …. C1,n C1+ C1,1/ C1+ 

C2 C2,1 C2,2 C2,3 …. C2,n C2+ C2,2/ C2+ 

C3 C3,1 C2,3 C3,3 …. C3,n C3+ C3,3/ C3+ 

. . . . …. …. ….  

n Cn,1 Cn,2 Cn,3 …. Cn,n Cn+ C3,3/ C n+ 

Column 
total  

C+1 C+2 C+3 …. C+n N  

PA C1,1/ C+1  C2,2/ C+2 C3,3/ C+3 …. Cn,n/ C+n   

 

1.2.2. Classification accuracy metrics 
 

Producer’s and user’s accuracies, kappa coefficient 
The information stored in accuracy assessment table is used to compute the confusion matrix metrics 
such as overall accuracy, producer’s and user’s accuracies, and kappa coefficient value. Dividing the 
number of correctly classified pixels by all samples/pixels in the confusion matrix determines the 
overall accuracy of classification (Congalton et al., 2019; Story et al., 1986). The Cohen’s kappa 
coefficient determines whether the classification map and the test data are in agreement. The kappa 
coefficient value is within the range of 0 and 1. When the value is close to 1, it is indicative of a reliable 
image classification result and great agreement between the classified categories and the reference 
sample. The kappa values that are close to zero indicate that there is little or no agreement between 
the classified targets and referenced samples (Congalton et al., 2019; Stehmann et al., 1998). There is 
an added value of using kappa compared to overall accuracy since it considers the possibility of the 
agreement occurring by chance, and can is thus a more realistic accuracy measure.  

 
Class-related accuracies are known as user’s and producer’s accuracies. Dividing the number of correct 
pixels in the class by the total number of pixels in the corresponding row or column is the method used 
to calculate the accuracy of individual classes. The producer's accuracy or recall refers to the total 
number of correctly classified pixels in a class divided by the total number of test data pixels in that 
class. This metric is used to determine how many positive test pixels were accurately classified as 
positive. The user’s accuracy is calculated by dividing the total number of correctly classified pixels in 
a class by the total number of pixels that were classified in that individual class. The likelihood that a 
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pixel classified in the classification image actually represents that class on the ground is determined by 
the user's accuracy or precision (Foody, 2004; Jensen, 2009).  
 
ROC curves and their AUC 
To evaluate the quality and performance of a binary classification, which outputs a continuous variable 
i.e. propability of belonging to a class, the two-dimensional Receiver Operating Characteristics (ROC) 
curve and its Area Under the Curve (AUC) value are commonly used (see example in Error! Reference 
source not found.). Different threshold settings are used to create the ROC curve plot by plotting the 
true positive rate (TPR) against the false positive rate (FPR). Correctly identified positive samples by 
the model are the TPR, which is the proportion of actual positive samples. The FPR, on the other hand, 
is the ratio of actual negative samples that are incorrectly identified as positive by the model. The X 
axis represents the FPR, and the Y axis represents the TPR.  A better classification model has curves 
that are more top-left-side and a higher TPR and lower FPR for each threshold. A random classifier is 
represented by the diagonal line, while a perfect classifier with TPR=1 and FPR=0 can be found in the 
top-left corner. 
 
The AUC is a measure of the model's overall performance, identifying how the model will rank a 
randomly chosen positive sample higher than a randomly chosen negative sample. If a model is perfect, 
its AUC would be 1, while if it is random, its AUC would be 0.5. When comparing the performance of 
multiple models, the AUC provides a single value that determines the overall performance of a model 
(Bradley, 1997).  
 

 
Figure 1. Example of a ROC curves for accuracy assessment of quartz and K-feldspar identified from drill core hyperspectral 
shortwave infrared imaging data (Rotem et al., 2023).  
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Precision-recall curves 
A precision-recall curve is a substitute for the ROC curve. The y-axis of this curve shows the precision 
(positive predictive value) versus the recall (sensitivity) for different thresholds in the x-axis. Precision-
recall is a valuable indicator of the effectiveness of prediction when the classes are highly imbalanced. 
Using the precision-recall curve, it is possible to see the trade-off between precision and recall at 
different thresholds. Both high recall and high precision can be attributed to a high AUC, with high 
precision being linked to a low false positive rate and high recall being linked to a low false negative 
rate. If both scores are high, then the classifier has an ability to produce accurate results (high 
precision), with a high majority of positive results (high recall) (Hackeling, 2017; Pedregosa et al., 2011). 

 

 
Figure 2. Example precision-recall curves for assessment of mapping valley fill faces by mountain top removal in coal mining 
from LiDAR data in (Maxwell et al., 2020).  
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F1-score 
F1-score, also known as f-measure, equally considers the contribution of precision and recall values. 
F1-score is the harmonic mean of precision and recall values. In case of a multi-class image 
classification, the F1-score values for each class are calculated based on a one-vs-all technique. The F1-
score ranges between 0 to 1, and a higher value specify a better performance of model in a particular 
class prediction. A high F1 score is commonly associated with a balanced performance that 
demonstrates the ability of a model to achieve both high precision and recall. If the F1 score is low, it 
suggests that the model is struggling to achieve a balance between recall and precision (Goutte and 
Gaussier, 2005). The performance of the model cannot be accurately determined by calculating F1-
score based on an arithmetic mean when the precision and recall values have significantly variable 
values. The F1-score can avoid overestimation and achieve balanced measurements, as the harmonic 
mean emphasizes the reciprocal of values (Sokolova et al., 2006). The F1-score equation is as follows. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
Precision∗Recall

Precision+Recall
 

 
Intersection over union (IoU) 
Intersection over union (IoU) is an accuracy measure to determine to what extent the prediction region 
overlaps with the reference data. This metric is usually used in spatial object detection and 
segmentation and ranges between 0 and 1. This performance metric quantifies the degree of overlap 
between pixels in predicted a bounding box or segmented region and the labelled bounding box or 
segmented ground truth region (Maxwell et al., 2021). The IoU calculation is done by determining the 
ratio of the overlap between the predicted and ground truth bounding boxes to the union of both 
bounding boxes. Perfect overlap is indicated by a value of 1, and no overlap is indicated by a value of 
0. The equation for IoU is provided below. 

 

𝐼𝑜𝑈= 
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 predicted and ground truth bounding boxes   

Union of  predicted and ground truth bounding boxes
 

 

1.2.3. Accuracy metrics for regression results 

 
A regression method can be used to estimate or predict a response variable by using a set of covariates. 
The targets in a classification problem are categorical, while in a regression task the response variable 
is continuous. The regression model is created or conditioned based on a set of input variables that 
correspond to known responses, such as done when constructing classification models. Estimating or 
predicting ground soil moisture using predictor data extracted from a remotely sensed imagery is an 
example of regression modelling. The ground soil moisture classes are not relevant in this case, as the 
response is a continuous variable. Several accuracy measure metrics such as Mean Squared Error, 
Mean Absolute Error, Root Mean Squared Error, and Coefficient of determination, i.e. R2, are 
commonly used to evaluate the performance of machine learning models in regression problems. 
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Mean Absolute Error (MAE) 
The mean absolute error (MAE) is defined by the average deviation of absolute actual and predicted 
values in the dataset. Additionally, the MAE is a measure of absolute discrepancies between the actual 
and predicted values. The average of the residuals in the dataset is taken into account by this measure. 

 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑦𝑖 − 𝑦

�̂�
|

𝑛

𝑖=1

 

 
Mean Squared Error (MSE) 
The Mean Squared Error (MSE) describes the average difference in squared error values between the 
actual and predicted values in the dataset. The variance of the residuals is measured by MSE. 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦

�̂�
)2

𝑛

𝑖=1

 

 
Root Mean Squared Error (RMSE) 
Root Mean Squared Error defines the standard deviation of residuals and is calculated using the square 

root of MSE. The RMSE measures whether the predicted values from a model are in accordance with 

the actual observed values in the dataset. 

RMSE =  √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=1

𝑛
 

 
One plus/minus standard deviation from mean 
The measurement of plus/minus one standard deviation from mean describes the range of values 
obtained by addition/ subtraction one standard deviation to/from the mean.  
It represents a value relatively near to the center of distribution. For a normal distribution, 
approximately 68% of the data falls within this range, indicating that these values are near the average 
and represent typical variations from the mean. 
 

Ratio of Performance to Deviation (RPD) 
The ratio of Performance to Deviation (RPD) is defined as the ratio of standard deviation of the sample 
data (SD) to the standard error of prediction (SEP). This metric is used to evaluate the accuracy and 
reliability of predictive models. Higher RPD values indicate better model performance, with values 
above 2 generally considered good and values above 3 considered excellent. 
 

𝑅𝑃𝐷 = 𝑆𝐷/𝑆𝐸𝑃 

 
Coefficient of determination (R-squared) 
Coefficient of determination or R-squared (R2) is statistical metric used to evaluate the goodness of fit 
of a regression model. This metric highlights the overall effectiveness of the regression model and 
measures how much of the variation in the dependent variable is due to the independent variables in 
the model. 
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In summary, if the MAE, MSE, and RMSE values are low, the regression model will be accurate (Jensen, 
2009). However, it is desirable to have a high R-squared value. In addition, RMSE and R-squared quantify 
how well a linear regression model fits a dataset. The RMSE indicates the accuracy of a regression model 
in predicting the response variable values in absolute terms, while R- Squared determines how 
effectively the predictor variables can explain the variability in the response variable. 

 

𝑅2 = 1 −  
∑ (𝑦�̂� − 𝑦𝑖)

2𝑛
𝑖=1

∑ (�̅� −  𝑦𝑖)2𝑛
𝑖=1

 

 
 
In the abovementioned equations, 𝑦𝑖  is the observed value, �̅� is the mean of the observed values, 𝑦�̂� is 
the model predicted value, and n is the number of samples. 
 

1.3. Accuracy budget table 
 

An accuracy budget table is a tool to track and manage the accuracy of measurements, calculations or 

processes within a project. It outlines the expected level of accuracy for each component in a process 

and helps ensure the achievement of accuracy requirements. The budget table may include 

information such as the desired accuracy level, allowable tolerances, measurement uncertainties and 

error sources (Moud et al., 2021). 

1.4. Sample size  
 

Identifying the optimal number of test samples for each class is an important step before calculating 
the overall accuracy as well as class specific accuracies. In order to conduct an accuracy assessment for 
a classification result it is usual to adopt a design-based framework (Stehmann and Foody, 2019), which 
assist in determining suitable sample size for accuracy evaluation (Foody, 2004). There are two 
equations or approaches that can be used to identify the sample size: 1) binomial distribution or the 
normal approximation, and 2) multinomial distribution that can provide a sample size estimation when 
multiple classes are included in the thematic image classification result (Congalton and Green, 2019; 
Pour et al., 2023). When the thematic map is based on binary classification, it is recommended to use 
the binomial function, which is a specific form of the multinomial function (Adami et al., 2012; 
Stehman, 2012). Thus, in a binary classification, the probability of correctly classified labels can be 
calculated based on the binomial distribution sampling design (Radoux et al., 2020). The binomial 
distribution is transformed into a multinomial distribution when more than two response 
variables/targets are characterized (Park, 2013). Therefore, multinomial distribution is recommended 
to evaluate multi-class classification maps with the required sample size (Congalton and Green, 2019; 
Jensen, 2009). 
 
The following equation demonstrates the use of binomial probability theory for specifying the sample 
size for land-use classification result, which was suggested by Fitzpatrick-Lins (1981): 
 

𝑁 =  
𝑍2(𝑝)(𝑞)

𝐸2
 

 



 

 

13 
The MultiMiner project is funded by the European Union’s Horizon Europe research and 

innovation actions programme under Grant Agreement No. 10109137474  
 

where p is the percentage of accuracy that the entire map is expected to achieve. q = 100 – p, E is the 
acceptable error, and the standard normal deviation of 1.96 corresponds to Z = 2 with the 95% two-
sided confidence level. 
 
Whilst Anderson, (1976) recommends obtaining approximately 85% overall accuracy for thematic 
classification map, Pontius Jr & Millones, (2011) emphasised that it would not be necessary to link the 
achieved accuracy level to 85% because research question or the study influence on the obtained 
accuracy. 
 
To assess classification accuracy of a multi-class thematic map, some analysts use equations based on 
a multinomial distribution to determine the required total sample size (N). The following equation 
demonstrates the sample size measured by multinomial distribution approach (Congalton and Green, 
2019):  

 

𝑁 =  
𝐵𝛱𝑖(1−𝛱𝑖)

𝑏𝑖
2  (Anderson et al., 1976) 

 
 
where 𝛱𝑖 demonstrates the proportion of the population in the ith class among all classes that is 
closest to 50%, 𝑏𝑖 indicates the expected precision (e.g., 5%) for this class. B specifies the upper 
percentile of the chi square (𝜒2) distribution, and k indicates the number of classes. 
When choosing a stratified sampling, a sample size of at least 30 units per strata is recommended to 
achieve an acceptable standard error (Olofsson et al., 2014; Lohr, 1999). 
 
Because of the core idea of MultiMiner project to apply weakly supervised methods using as low 
number of in situ measurements as possible, a smaller sample size should be considered and accepted 
if accuracy is sufficient.  
 

 

1.5. Sampling design methods  
 
After identifying the total number of samples and the number of samples for each class, it is important 
to design a sampling plan including the geographic locations of the ground truth samples. In order to 
have a reliable accuracy assessment approach, it is vital to collect samples randomly to avoid the 
unnecessary bias. It is worth noting that bias in the thematic accuracy assessment can cause the 
confusion matrix to overestimate or underestimate the actual accuracy of the produced classification 
map. Conducting different sampling design schemes can be done using random sampling methods. 
Hence, it is essential to choose a suitable random sampling design. Different variance equations are 
required for different sampling schemes due to their respective sampling models. These widely used 
sampling design methods are: 
 

• Simple random sampling 

• Systematic sampling 

• Stratified random sampling 

• Cluster sampling 

• Post-stratification 
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Figure 3. Illustrations of sampling designs methods: a) random sampling; b) systematic sampling; c) stratified random 
sampling; and d) cluster sampling. Sub-figures adopted from (Jensen, 2009). 

 
 
 
Simple Random Sampling 
Simple random sampling is a basic sampling technique which selects individuals in a population with 
equal probabilities. Furthermore, the choice of one sample is not a factor in selecting any other sample. 
This technique has the potential to undersample classes with limited sample numbers, which is one of 
its main disadvantages (van Oort, 2007).  

 
Systematic Sampling 
Systematic sampling is a statistical sampling technique that assures that random samples are selected 
from the population, with each sample selected based on a fixed sampling interval. The sampling result 
of simple random sampling and systematic sampling could lead to a small sample size for a rare class 
or classes unless the overall number of samples in the population is very large (Jensen, 2009).  

 
Stratified Random Sampling 
Stratified random sampling is a probability sampling technique than involves dividing the population 
into homogenous groups, known as strata. In stratified random sampling, the strata are formed based 
on shared attributes of the members or on characteristics which corresponds to a RS derived thematic 
map. The random selection of data from an entire population is done in a stratified manner, which 
means that unlike in simple random sampling, each possible sample is equally likely to occur. The main 
benefit of stratified random sampling is that it ensures samples being assigned to every strata even to 
ones with a limited spatial extent. A ready thematic map is necessary to allocate samples to the 
different land-cover strata, which is a drawback of stratified random sampling. The remote sensing 
data acquisition and ground reference test collection can thus seldomly occur on the same day (Jensen, 
2009).  
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Cluster sampling 
Cluster sampling involves using at least two sample sizes. If two sampling units are utilized, the large 

unit is referred to as the primary sampling unit (PSU). Pixels, block of pixels, linear cluster of pixels 

(Edwards Jr et al., 1998), an aerial photograph, or satellite image are all viable sources of the PSU. The 

second sample size is smaller, and this is called a secondary sampling unit (SSU). Initiating the process 

first involves selecting the sample of PSUs. One-stage cluster sampling is performed when all SSUs 

within each sampled PSU are chosen. However, a two-stage cluster sampling is performed when a 

subsample of SSUs is chosen. The primary reason for using cluster sampling is to decrease the cost of 

obtaining data in the field (Warner et al., 2009).  

Post-stratification 
Post-stratification is a procedure of dividing the observations into group of strata after completion of 

the sampling process. Post-stratification may apply to a collected in situ samples prior to availability of 

a remote-sensing-based stratification. Post-stratification can be performed on any sample set, but the 

post-stratified estimation can only be useful if the size or proportion of each stratum relative to the 

population is known (Gregoire and Valentine, 2007). Forestry surveys can be facilitated by post-

stratification because field sampling and analysis, as well as interpretation of RS data, can be carried 

out independently (Köhl et al., 2006). 

 

1.6. Dealing with class imbalance or rare classes  
 
In some cases, the class of interest on a study site have rare occurrence, i.e. it is limited in geographical 
extent. An example in mineral exploration would be a mineralized body or in mine site monitoring 
limited dispersion of AMD. In such circumstances the number of labelled data can be greatly 
imbalanced with only a few labels representing the class of interest. Also, if the coverage of the class 
is very small relative to the large pixels of the RS data, dense labeling could not applied. Secondly, 
extensive collection of ground truth data may not be allowed e.g. by the landowner, government 
agencies or, may not be possible, for example, for industrial safety reason or exceptionally rugged 
terrain. 
 
In these cases of missing or extremely limited ground truth data, the use of abovementioned 
quantitative accuracy assessment methods is not possible. Then, alternative accuracy assessment 
approaches should be employed. The following examples of mineral identification demonstrate what 
can be done in the absence of quantitative accuracy assessment. Chirico et al. (2023) utilized PRISMA 
satellite hyperspectral data to delineate hydrothermal dolomitization and supergene alteration. The 
authors examined the spectral features of PRISMA hyperspectral data against reference spectral 
reflectance features and created mineral maps by applying band ratios of satellite hyperspectral data. 
The authors just made a qualitative comparison of the spectral signatures of the PRISMA data to 
laboratory reflectance spectra without a quantitative assessment of the final mineral map. In a study 
by Bierwirth et al. (2002), HyMap airborne hyperspectral data was utilized to map alteration minerals 
which are linked to gold prospects. The authors only validated the mineral abundance maps 
qualitatively by analysing the portable infrared mineral analyser (PIMA) data of field samples. In 
addition, during rock analysis the presence of anomalous gold was confirmed was available and it did 
not allow employing a fully quantitative accuracy assessment (Althnian et al., 2021). However, 
comparison of the areas between the ground detected and EO data interpreted class extents may be 
possible. 
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1.7. Strategies to mitigate small number of reference in situ data 

 

Unlike supervised machine learning (ML) models, the weakly supervised methods (Katsaragakis et al., 
2020) require dealing with a small number of in situ reference data. The small amount of available data 
affects model training procedures but should not change accuracy assessment principles. A strict 
division between the definitions of a small or large number of reference data is not to be performed.  
In practice the small amount of reference data available brings additional constraints to accuracy 
assessment. In addition, it should be considered that an increase in system complexity, observation 
rarity and area coverage correlate positively with the small data problem (small data problem: when a 
dataset has a small sample size, covers the distribution poorly, or when the sample number will 
probably not be sufficient to find meaningful features with ML (Safonova et al., 2023).  
 
The advantages of small datasets are a fast training time (Safonova et al., 2023; Althnian et al., 2021), 

reduced memory requirements  (Safonova et al., 2023; Katsaragakis et al., 2020, Wang et al., 2023) 

and small operational costs (Safonova et al., 2023). Disadvantages of small datasets are the lack of 

generalisability and transferability due to overfitting (Liu et al., 2017). Additionally, the dataset may be 

biased (Althnian et al., 2021).  

Part of a full independent unbiased accuracy assessment procedure for ML models is to carefully define 

the split between training set (TRAIN) for training the weakly-supervised model and testing test (TEST) 

for accuracy assessment (Figure 4), to ensure that both datasets are balanced and representative. The 

inherent challenge of weakly supervised method lies in designing, implementing and training a model 

that can, with a fraction of the training set (or coarser/lower quality reference labels), reach a similar 

accuracy on the independent testing set.  

Figure 4. Validation procedure for machine learning algorithm (NaveganTeX, 2019). 

An approach to deal with a low number of training data in the model training phase is the technique 

of transfer learning when a pre-trained model is based on a large and relevant dataset is used. 

Improving performance and generalisability with reduced data requirements is the advantage. 

Whereas the disadvantages are risking the transformation into a different domain and an 

unnecessarily model upsizing. Another technique could be the use of a mix of supervised and 
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unsupervised learning to enhance generalisability. The few-shot learning as a type of meta-learning 

which is used to teach the model to generalise for new tasks with only a few samples per class. Other 

less common applications such as process-aware, ensemble or active DL technique are summarised by 

Safonova et al. (2023).  

In the model training phase, the splitting of the training-testing sets for model validation can be done 

in two ways: 

1. The repeated random subsampling validation (Figure 5 A), in which the model evaluation is 

repeated while subsampling is used to estimate model performance instability, is not 

commonly recommended because spatial and temporal data comes with high autocorrelation. 

2. The k-fold cross validation (Figure 5 B) is a better choice when dealing with small datasets 

(Safonova et al., 2023). Especially Leave-One-Out Cross-Validation (LOOCV) is recommended 

in case of very small dataset. The special cases of k-fold cross validation are: 

o Stratified cross-validation. In the stratified cross-validation, the distribution of classes 

in each fold is almost the same as in the original dataset (Diamantidis et al., 2000) 

(Figure 6). This method deals better with spatial autocorrelation and overfitting, but 

usually requires more samples. 

o Leave p out cross validation. In leave p out cross validation, p describes the number of 

testing data left out randomly (usually smaller than the size of one fold in k-fold CV). 

o Leave-One-Out Cross-Validation (LOOCV). In LOOCV, only one observation is left out 

from the training set (Cheng et al., 2017). 

 

Figure 5. Model validation schemes. A Validation by repeated random sampling, in which the model evaluation is repeated 
while subsampling is performed to estimate the instability of model performance. B K-fold cross validation, in which the data 
is first divided into groups and then the model performance is evaluated recursively on the basis of one of the groups. If the 
grouping is based on the spatial coordinates, this is referred to as spatial cross-validation. This figure is adapted and modified 
from Safonova et al. 2023,  CC BY 4.0 license (https://creativecommons.org/licenses/by/4.0/). 
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Figure 6. Schematic diagram of stratified k- fold cross-validation. This figure is adapted from Duan 2023, used under CC BY 4.0 
license (https://creativecommons.org/licenses/by/4.0/). 

Spatial-based methods, which use patches or windows as inputs such as deep learning methods, 
should be applied with care when only a small amount of reference data is available. This is especially 
true if samples are spatially close to each other. When the distance between a sample in training set 
and a sample in test set is shorter than the size of an input patch, then the patches used in training 
and testing overlap spatially. This leads to overfitting, as some pixel values from the test patch 
(supposedly independent) have already been “seen” by the model (in the input patch of the nearby 
training sample). This spatial overlap between training and testing patches leads to over optimistic 
accuracy assessment, and a loss of generalization ability of the model (Molinier and Kilpi, 2019).  

Several alternative sampling schemes have been proposed to reduce these effects, but only strict 
spatial separation of training and test samples with a buffer larger than the size of input patches can 
avoid the overlap effect (Molinier and Kilpi, 2019). If a larger sample area cannot be used, then training 
and test sets should be spread at least so that training patches and test patches are spatially disjoint. 
Some authors suggest even stricter conditions to avoid spatial autocorrelation or recommend to be 
aware of the spatial area of applicability for a model trained on a small geographic area (Meyer et al., 
2021). 
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2. Quality of EO data  
 

Regarding the accuracy assessment a closer look at EO data (used for developing the MultiMiner 

applications) quality should be performed, as EO data is a basic information tool. Details on EO data 

and pre-processing used for developing MultiMiner applications are presented in deliverable 3.1 

“Timely mine site monitoring algorithms design and input data requirements”. 

The EO data used for developing MultiMiner applications are listed in Table 3.  

Table 3. EO data used for developing MultiMiner applications. Table will to be updated during the project. 

Platforms 
Sensor/Instrument and data 

Multispectral Hyperspectral SAR Other 

Spaceborne 
platform 

Copernicus 
Sentinel-2, MODIS, 
Planet, WorldView-
3 

EnMAP, PRISMA Copernicus 
Sentinel-1, 
TerraSAR-X  

Sentinel-5  

Manned aircraft 
platform 

 VNIR/SWIR/TIR 
(AisaFenix/AisaOWL) 

 Open access 
LiDAR DEMs 

Drone platform Photogrammetric,  
drone 
RGB+Multispectral 

VNIR-SWIR camera 
(HySpex Mjolnir VS-
620) 
 

Multi-band 
Interferometric 
SAR system 
(Explorer RD350) 

Gamma 
spectrometer, 
LiDAR, FLIR 
(Teledyne) 

Close-range 
sensing 

Imaging spectrometers: VNIR, SWIR, LWIR with AisaFENIX and AisaOWL 
(Specim, Spectral Imaging Ltd.) 

 

2.1.  Quality of satellite remote sensing data 
 

EO data provider take various measures to ensure the quality of their EO products. ESA has established 

an ongoing Earthnet Data Assessment Project (EDAP) as a collaboration between ESA and NASA to 

ensure the quality of EO data acquisition (ESA, 2024; Hunt, 2022). The approach for assessing the 

quality of data products is based on the Quality Assurance Framework for Earth Observation (QA4EO) 

principle (QA4EO Task Team, 2010). In addition to best practice guidelines, documents are also 

provided that describe the methods, algorithms, reference datasets and tools for assessing of the data 

quality (ESA, 2024). 
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2.2.  Quality of manner aircraft and drone data  
 

A detailed description of UAV data acquisition is available in the Field Guidebook (D4.1 Part 1, Chapter 

3.3 UAV data acquisition). The following chapter briefly outlines the quality of manned aircraft and 

drone data. 

For UAV data acquisition a number of variables are involved and some of them are not within the scope 
of the operator´s control. The first control of the data should be carried out as early as possible, as it 
is very likely that not all initial parameter settings are optimal and need adjustments or recalibration. 
During the flight procedure quality control is limited (TRuStEE, 2018). 

Operational safety is ensured by annual maintenance by the manufactur, preflight and postflight 
checks, as well as documented battery management. Flight planning and flight procedure are made 
under the appropriate categories of the European Union Aviaton Safety Agency (EASA) guidelines 
(EASA, 2017). 

To ensure good data quality, the following steps of a protocol must be observed. For flight planning 
the site and risk assessments are just as important as the planning of the flight and the required 
equipment. The flight preparation should include examination of the weather forecast, valid site 
permissions and notifications and preparation of the equipment. The flight procedure includes in situ 
site and weather assessment, pre-flight controls, the flight itself and post-flight controls. Ancillary 
measurements to be taken into account are e.g. ground control points. Tasks to perform after flight 
should include reporting the taken measurements, reporting the field work and data, and quality 
control and validation of the product (TRuStEE, 2018). 

Data should be backed up on a server and entered into a metadata database. 

In the event of an accident, a possible data back-up and a report to EASA should be performed. To 
support drone operations, a risk-based 10 step approach called Specific Operations Risk Assessment 
(SORA) is available (EASA, 2024). 

  



 

 

21 
The MultiMiner project is funded by the European Union’s Horizon Europe research and 

innovation actions programme under Grant Agreement No. 10109137474  
 

3. References 
 

Adami, M., Mello, M. P., Aguiar, D. A., Rudorff, B. F., & de Souza, A. F. (2012). A web platform 

development to perform thematic accuracy assessment of sugarcane mapping in South-

Central Brazil. Remote Sensing, 4(10), 3201-3214. 

Althnian, A., AlSaeed, D., Al-Baity, H., Samha, A., Bin Dris, A., Alzakari, N., . . . Kurdi, H. (2021). Impact 

of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical 

Domain. Applied sciences, 11(2). doi:https://doi.org/10.3390/app11020796 

Anderson, J., Hardy, E., Roach, J., & Witmer, R. (1976). A land use and land cover classification system 

for use with remote sensor data (Vol. 671). U.S. Geological Survey Circular. 

Batbold, C., Yumimoto, K., Chonokhuu, S., Byambaa, B., Avirmed, B., Ganbat, S., . . . Matsuki, A. 

(2022). Spatiotemporal Dispersion of Local-Scale Dust from the Erdenet Mine in Mongolia 

Detected by Himawari-8 Geostationary Satellite. Scientific Online Letters on the 

Athmosphere, 18, 225-230. doi:https://doi.org/10.2151/sola.2022-036 

Bedell, R. (2004). Remote Sensing in Mineral Exploration. SEG Discovery, 58, 1-14. 

doi:https://doi.org/10.5382/SEGnews.2004-58.fea 

Bierwirth, P., Huston, D., & Blewett, R. (2002). Hyperspectral Mapping of Mineral Assemblages 

Associated with Gold Mineralization in the Central Pilbara, Western Austrailia. Economic 

Geology, 819-826. doi:https://doi.org/10.2113/gsecongeo.97.4.819 

Borengasser, M., Hungate, W., & Watkins, R. (2007). Hyperspectral Remote Sensing - Principles and 

Applications. CRC Press. 

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learnin 

algorithms. Pattern Recognition, 30(7), 1145-1159. 

Cheng, H., Garrick, D., & Fernando, R. (2017). Efficient strategies for leave-one-out cross validation 

for genomic best linear unbiased prediction. Journal of Animal Science and Biotechnology, 8. 

Chirico, R., Mondillo, N., Laukamp, C., Mormone, A., Martire, D., Novellino, A., & Balassone, G. 

(2023). Mapping hydrothermal and supergene alteration zones associated with carbonate-

hosted Zn-Pb deposits by using PRISMA satellite imagery supported by field-based 

hyperspectral data, mineralogical and geochemical analysis. Ore Geology Reviews. 

doi:https://doi.org/10.1016/j.oregeorev.2022.105244 

Congalton, R. G., & Green, K. (2019). Assessing the accuracy of remotely sensed data: principles and 

practices. CRC press. 

Diamantidis, N., Karlis, D., & E., G. (2000). Unsupervised stratification of cross-validation for accuracy 

estimation. Artificial Intelligence, 116, 1-16. doi:https://doi.org/10.1016/S0004-

3702(99)00094-6 

Duan, X. (2023). Automatic identification of conodont species using fine-grained convolutional neural 

networks. Front. Earth Sci., 10. doi: https://doi.org/10.3389/feart.2022.1046327 



 

 

22 
The MultiMiner project is funded by the European Union’s Horizon Europe research and 

innovation actions programme under Grant Agreement No. 10109137474  
 

EASA. (2017). Introduction of a regulatory framework for the operation of drones. Retrieved from 

https://www.easa.europa.eu/en/document-library/notices-of-proposed-amendment/npa-

2017-05#group-easa-downloads 

EASA. (2024, 02/). Specific Operations Risk Assessment (SORA). Retrieved from 

https://www.easa.europa.eu/en/domains/civil-drones-rpas/specific-category-civil-

drones/specific-operations-risk-assessment-

sora#Risk%20assessment%20of%20the%20intended%20operation%20%E2%80%93%20SORA 

Edwards Jr, T., Moisen, G., & Cutler, D. (1998). Assessing map accuracy in a remotely sensed, 

ecoregion-scale cover map. Remote Sensing of Environment, 73-83. 

doi:https://doi.org/10.1016/S0034-4257(96)00246-5 

ESA. (2020). Newcomers earth observation guide. Retrieved from 

https://business.esa.int/newcomers-earth-observation-guide#ref_9 

ESA. (2024, 01/ 26). Earth Online - EDAP Best Practice Guidelines. Retrieved from 

https://earth.esa.int/eogateway/activities/edap/edap-best-practice-guidelines 

ESA. (2024, 01/ 26). Earth Online - EDAP Reference data, methods and tools. Retrieved from 

https://earth.esa.int/eogateway/activities/edap/edap-reference-data-methods-tools 

ESA. (2024, 01/ 26). Earth Online-EDAP Overview. Retrieved from 

https://earth.esa.int/eogateway/activities/edap 

ESA. (2024, 01/ 26). Quality Management and Assurance. Retrieved from 

https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Quality_Manageme

nt_and_Assurance 

Foody, G. (2013). Ground reference data error and the mis-estimation of the area of land cover 

change as a function of its abundance. Remote Sensing Letters, 4, 783-792. 

Foody, G. (n.d.). Accuracy assessment methods and challenges. Retrieved from 

http://www.gofcgold.wur.nl/documents/jena08/1410_AA/05jena-accuracy.pdf 

Foody, G. M. (2004). Thematic map comparison: Evaluating the statistical significance of differences 

in classification accuracy. Photogrammetric Engineering and Remote Sensing, 70(5), 627-634. 

Goutte, C., & Gaussier, E. (2005). A probabilistic interpretation of precision, recall and F-score, with 

implication for evaluation. Advances in Information Retrieval: 27th European Conference on 

IR Research. Proceedings 27, pp. 345-359. Santiago de Compostela, Spain: ECIR 2005. 

Gregoire, T., & Valentine, H. (2007). Sampling strategies for natural resources and the environment. 

Chapman & Hall/CRC Taylor & Francis Group. 

Hackeling, G. (2017). Mastering Machine Learning with scikit-learn: Apply effective learning 

algorithms to real-world problems using scikit-learn. Packt Publishing Ltd. 

Hunt, S. (2022). Earth Observation Mission Quality Assessment Framework. ESA- EDAP. Retrieved 

from https://earth.esa.int/eogateway/documents/20142/37627/Mission-Quality-

Assessment-Guidelines-v2.2.pdf/033c703e-02f8-d993-9859-

560aeb61d2a0?t=1676561363850 



 

 

23 
The MultiMiner project is funded by the European Union’s Horizon Europe research and 

innovation actions programme under Grant Agreement No. 10109137474  
 

Jackisch, R., Lorenz, S., Zimmermann, R., Möckel, R., & Gloaguen, R. (2018). Drone-Borne 

Hyperspectral Monitoring of Acid Mine Drainage: An Example from the Sokolov Lignite 

District. Remote sensing, 10(385). doi:10.3390/rs10030385 

Jensen, J. (2009). Remote Sensing of the Environment: An Earth Resource Perspective. Pearson 

Education. 

Jensen, J. R., & Jensen, R. R. (2012). Introductory geographic information systems. Pearson Higher Ed. 

Katsaragakis, M., Papadopoulos, L., Konijnenburg, M., Catthoor, F., & Soudris, D. (2020). Memory 

Footprint Optimization Techniques for Machine Learning Applications in Embedded Systems. 

IEEE International Symposium on Circuits and Systems (ISCAS). Seville, Spain: IEEE. 

doi:10.1109/ISCAS45731.2020.9181038 

Köhl, M., Magnussen, S., & Marchetti, M. (2006). Sampling Methods, Remote Sensing and GIS 

Multiresource Forest Inventory. Springer. 

Li, Y., Zhao, H., & Fan, J. (2015). Application of Remote Sensing Technology in Mine Environment 

Monitoring., 04008, 22, p. 6. doi: https://doi.org/10.1051/matecconf/20152204008 

Liu, B., Wei, Y., Zhang, Y., & Yang, Q. (2017). Deep Neural Networks for High Dimension, Low Sample 

Size Data., (pp. 2287-2293). Melbourne. doi:https://doi.org/10.24963/ijcai.2017/318  

Lohr, S. (1999). Sampling: Design And Analysis. CRC Press. 

Lumbroso, D., Roca, M., Petkovšek, G., Davison, M., Liu, Y., Goff, C., & Wetton, M. (2020). DAMSAT: 

An eye in the sky for monitoring tailings dams. Mine Water and the Environment, 40. 

doi:10.1007/s10230-020-00727-1 

Maxwell, A., Pourmohammadi, P., & Poyner, J. (2020). Mapping the Topographic Features of Mining-

Related Valley Fills Using Mask R-CNN Deep Learning and Digital Elevation Data. Remote 

Sensing, 12(3), 547. doi:10.3390/rs12030547 

Maxwell, A., Warner, T., & Guillén, L. (2021). Accuracy assessment in convolutional neural network-

based deep learning remote sensing studies- Part1: Literature review. Remote Sensing, 

13(13), 2450. doi:https://doi.org/10.3390/rs13132450 

McKenna, P., Lechner, A., Phinn, S., & Erskine, P. (2020). Remote Sensing of Mine Site Rehabilitation 

for Ecological Outcomes: A Global Systematic Review. Remote sensing, 12(3535). 

doi:https://doi.org/10.3390/rs12213535 

Meyer, H., & E., P. (2021). Predicting into unknown space? Estimating the area of applicability of 

spatial prediction models. Ecology and Evolution, 1620-1633. 

doi:https://doi.org/10.1111/2041-210X.13650 

Modiegi, M., Rampedi, I., & Tesfamichael, S. (2020). Comparison of multi-source satellite data for 

quantifying water quality parameters in a mining environment. Journal of Hydrology, 

591(125322). doi:https://doi.org/10.1016/j.jhydrol.2020.125322 

Molinier, M., & Kilpi, J. (2019). Avoiding Overfitting When Applying Spectral-Spatial Deep Learning 

Methods on Hyperspectral Images with Limited Labels. IEEE International Symposium on 

Geoscience and Remote Sensing (IGARSS) .  



 

 

24 
The MultiMiner project is funded by the European Union’s Horizon Europe research and 

innovation actions programme under Grant Agreement No. 10109137474  
 

Moud, F., Ruitenbeek van, F., Hewson, R., & Meijde van der, M. (2021). An approach to accuracy 

assessment of ASTER derived mineral maps. Remote Sensing. 

doi:doi.org/10.3390/rs13132499 

NaveganTeX. (2019). Cross Validated. Retrieved from 

https://stats.stackexchange.com/questions/410118/cross-validation-vs-train-validation-test 

Olofsson, P., Foody, G., Herold, M., Stehman, S., Woodcock, C., & Wulder, M. (2014). Good practices 

for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 

148. doi:https://doi.org/10.1016/j.rse.2014.02.015 

Park, K. (2013). Generating Thematic Maps from Hyperspectral Imagery Using a Bag-of-Materials 

Model. The Ohio State University. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay, E. 

(2011). Scikit-learn: Machine Learning in Python. 12, 2825-2830. 

Pontius Jr, R. G., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and 

allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 

32(15), 4407-4429. 

Pour, A., Parsa, M., & Eldosouky, A. (2023). Introduction to mineral exploration. Geospatial Analysis 

Applied to Mineral Exploration, 1-16. doi:doi.org/10.1016/B978-0-323-95608-6.00002-0 

Pour, A., Ranjbar, H., Sekandari, M., El-Wahed, M., Hossain, M., Hashim, M., . . . Muslim, A. (2023). 

Remote sensing for mineral exploration. Geospatial Analysis Applied to Mineral Exploration, 

17-149. doi:doi.org/10.1016/B978-0-323-95608-6.00002-0 

Pour, A., Zoheir, B., Pradhan, B., & Hashim, M. (2021). Editorial for the Special Issue: Multispectral 

and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental 

Monitoring of Mined Areas. Remote sensing, 13(3), 519. 

doi:https://doi.org/10.3390/rs13030519 

QA4EO Task Team. (2010). Quality Assurance for Earth Observation Principles. Retrieved from 

http://qa4eo.org/docs/QA4EO_Principles_v4.0.pdf 

Radoux, J., Waldner, F., & Bogaert, P. (2020). How response designs and class proportions affect the 

accuracy of validation data. Remote Sensing, 12(2), 257. 

Rotem, A., Vidal, A., Pfaff, K., Tenorio, L., Chung, M., Tharalson, E., & Monecke, T. (2023). 

Interpretation of Hyperspectral Shortwave Infrared Core Scanning Data Using SEM-Based 

Automated Mineralogy: A Machine Learning Approach. Geosciences, 13(7), 192. 

doi:https://doi.org/10.3390/geosciences13070192 

Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 157-183. 

doi:https://doi.org/10.1016/S0169-1368(99)00007-4 

Safonova, A., Ghazaryan, G., Stiller, S., Main-Knorn, M., Nendel, G., & Ryo, M. (2023). Ten deep 

learning techniques to address small data problems with remote sensing. International 

Journal of Applied Earth Observation and Geoinformation. 

doi:https://doi.org/10.1016/j.jag.2023.103569 



 

 

25 
The MultiMiner project is funded by the European Union’s Horizon Europe research and 

innovation actions programme under Grant Agreement No. 10109137474  
 

Shang, J., Morris, B., Howarth, P., Levesque, J., Staenz, K., & Neville, B. (2014). Mapping mine tailing 

surface mineralogy using hyperspectral remote sensing. Canadian Journal of Remote Sensing, 

35, S126-S141. doi:10.5589/m10-001 

Shirmard, H., Farahbakhsh, E., Müller, R. D., & Chandra, R. (2022). A review of machine learning in 

processing remote sensing data for mineral exploration. Remote Sensing of Environment, 

112750. doi:https://doi.org/10.1016/j.rse.2021.112750 

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond Accuracy, F-Score and ROC: A Family of 

Discriminant Measures for Performance Evaluation., (pp. 1015-1021). Australasian Joint 

Conference on Artificial Intelligence. 

Song, Z., Li, X., Huo, R., & Liu, L. (2023). Intelligent early-warming platform for open-pit mining: 

Current status and prospects. Rock Mechanics Bulletin(100098). 

doi:https://doi.org/10.1016/j.rockmb.2023.100098 

Stehman, S. (2012). Impact of sample size allocation when using stratified random sampling to 

estimate accuracy and area of land-cover change. Remote Sens. Lett, 3, 111-120. 

Stehman, S. (2013). Estimating area from an accuracy assessment error matrix. Remote Sensing of 

Environment, 132, 202-211. 

Stehman, S., & Foody, G. (2019). Key issues in rigorous accuracy assessment of land cover products. 

Remote Sensing of Environment, 111199. doi:https://doi.org/10.1016/j.rse.2019.05.018 

Stehmann, S., & Czaplewski, R. (1998). Design and Analysis for Thematic Map Accuracy Assessment. 

Remote Sensing of Environment, 64(3), 331-344. doi:10.1016/S0034-4257(98)00010-8 

Story, M., & Congalton, R. (1986). Accuracy Assessment: A User’s Perspective. Photogrammetric 

Engineering and Remote Sensing. Natural Science, 52, 397-399. 

TRuStEE. (2018). Standardized protocol for UAV data acquisition. TRuStEE - Training on Remote 

Sensing for Ecosystem modelling . Delalieux, S. 

van Oort, P. A. J. (2007). Interpreting the change detection error matrix. Remote Sensing of 

Environment, 108(1), 1–8. https://doi.org/10.1016/J.RSE.2006.10.012 

Wang, H., Duentsch, I., Guo, G., & Ali Khan, S. (2023). Special issue on small data analytics. 

International Journal of Machine Learning and Cybernetics, 17, 1-2. 

doi:https://doi.org/10.1007/s13042-022-01699-0 

Yan, Y., Yu, H., & Wang, Y. (2024). Alarming a tailings dam failure with a joint analysis of InSAR-

derived surface deformation and SAR-derived moisture content. Remote Sensing of 

Environment, 300(113910). doi:https://doi.org/10.1016/j.rse.2023.113910 

 


